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Abstract

Edge detection is one of the most important steps a computer must perform to gain understanding

of an object in a digital image either from disk or from video feed. Edge detection allows for the

computer to describe the shape of the objects in an image and create a pixel boundary defining what

is considered part of an object, and what is not. Cannys edge detection algorithm is one of the most

robust and accurate of these edge detection algorithms. However, as with many algorithms in image

processing, there are many cases where the algorithm does not perform as well as an application

requires. This can be caused by many problems, many of which are beyond the control of the

image analyst because the images were supplied with poor lighting, or from security cameras, or low

contrast situations. Even steps like converting the image to grayscale can interfere with detection.

In this thesis we will explore improvements to the algorithm by a dynamic system that will select a

color channel to help deal with data loss issues and improve the contrast between the object and its

background using partial histograms. Then we will use histogram equalization to greatly improve

the contrast of the image and explore a progressive implementation of histogram equalization to

reduce the noise and get good detection of the objects that an unmodified edge detector would have

struggled with.
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Chapter 1

Introduction

Computer image processing is a field of study that can solve a large domain of problems. There are

many tasks that we perform or hire people to perform by hand often because we are unaware of

the technology and the algorithms that exist which could make the tasks easier, or even automate

the task entirely. Many of the tasks we have people do by hand are tasks that involve very noisy

and di�cult to parse data, such as identifying objects in a series of photographs. Often, these

photographs must have an algorithmic task performed on them, such as identify and catalog all

objects that appear in the photographs, or detect if there is an object of interest in the photograph

at all. Another common problem relates to security camera footage. Rather than run through an

entire video by hand to find significant events, it would be more useful if the system was able to

simply know certain timestamps of interest and even give the information needed to identify the

object that caused the event.

Because there is such a wide range of problems that can be solved with image processing, it

is di�cult to find an algorithm that solves all of the problems you could ever be presented with

very well. These images could come from a variety of sources, from di↵erent cameras with di↵erent

lenses or resolutions. Additionally the lighting features of these images could be vastly di↵erent.

They could be taken by hand by a professional who understands lighting and tries to take the

photograph so it is easy to see the features of the object of the photograph. The images could

also come from a source like a security camera, or a satellite, which will take the pictures with no

regard to providing special lighting conditions. They could also be taken during a dark night, or

from a camera that is pointed towards very bright light sources. These types of scenarios require

modifications to the standard detector that would often be found in common libraries [XJL06], or at

least additional preprocessing of the image [NPKJ08]. Therefore, in order to be skilled with image

processing, a good understanding of many image processing techniques is necessary. Very e�cient

1
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image processing applications often use techniques that are catered to the specific problem they are

trying to solve.

In this thesis, we are going to explore how to detect objects in photographs and digital imagery.

We want our algorithm to work on as many types of objects and with as many types of cameras as

possible. In order to do this we will need to use advanced edge detection algorithms like Canny’s edge

detector. Unfortunately, there are situations that Canny’s detector alone cannot solve perfectly. So,

in addition to our own implementation of Canny edge detector, we will explore ways to process data

for the purposes of maximizing contrast while still trying to minimize the number of false edges. If

there are false edges introduced, we hope that they are small, so later algorithms can easily identify

and remove these false edges. We will look at techniques like color channel selection and histogram

equalization. There are downsides to both and we will show that some of these limitations can be

resolved. In this thesis we are going to explore modifications to the Canny edge detection algorithm

and show how we are able to use it to detect objects. On the other hand, there are major benefits

to the systems we suggest, which is why we recommend considering these approaches when trying

to detect objects and their edges. Another technique we are going to explore in this thesis is using

histogram equalization to correct for poor or extremely strong lighting conditions, often improving

situations where increasing the contrast by color channel selection isn’t as easily possible. The next

chapter will cover the background of the field of image processing, and the techniques we are going

to use. The implementation chapter will cover the specific decisions made in this implementation of

Canny’s edge detector as well as the implementation of the color channel selector and the histogram

equalization algorithm. We will also describe our progressive version of histogram equalization,

which is a small modification to the existing algorithm but can give better results from better

distribution. Finally, in chapter four, we will look at the results of our implementation’s decisions

and compare them to traditional approaches or other decisions. For example, we will compare the

decision to use the luma of the image, as is usually traditional, against other color channels to

show that selecting a specific color channel that will maximize contrast enhances the strength of

the gradients, allowing Canny’s edge detector to more easily select important edges. We will also

compare traditional histogram equalization with the progressive histogram equalization algorithm

we implemented and compare the results.

2
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Chapter 2

Background

2.1 Additive Color Scheme and RGB Encoding

Before work can be done on analyzing photographs with an edge detector or other image processing

program, it is important to understand how images are stored and displayed digitally. Computer

monitors and other displays that attach to computers generally consist of a large array of pixels.

Pixels are small colored lighting elements that are responsible for lighting themselves to a specific

color so they can represent a small part of the image they are responsible for displaying. In order

to do this e↵ectively, the pixels obey the additive color model and are actually comprised of three

sub-pixels for each of the three di↵erent color channels in the additive color model: red, green and

blue. When a sub-pixel is completely unpowered, we say the intensity of that pixel is low, and so

it displays as black. As the intensity of a specific sub-pixel increases, the color that the sub-pixel is

responsible for increases. So if the sub-pixel is for the red component, low intensities will result in

dark reds and high intensities will result in a bright red. If the blue sub-pixel gains intensity, the

pixel goes from black to dark blue and eventually a bright blue. If red and blue are both at their

most intense value for a given pixel, then the visual e↵ect of adding a bright red and a bright blue

will be the result, which will yield a magenta color. Color is a human perceptual to seeing various

wavelengths in the color light spectrum [PV00]. The additive color model is one of many di↵erent

ways to represent and organize the concept of color [BB82] but there are other models that could

be used that could create the same phenomena. The additive color model, for example, contrasts

with subtractive color models that default low intensity values for sub-pixels as white and the colors

cyan, yellow and magenta subtract from the white to create black when cyan, yellow and magenta

are at maximal intensity. The cyan, yellow and magenta color model is used by most printers,

for example, compared to monitors and televisions that use the additive color model [Pit00]. The

3
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Figure 2.1: The basic representation of a digital image.

medium printers display on is usually white paper, so to elicit the same response from human eyes,

the printer needs to subtract colors from the white, while monitors fill a dark screen with light of

varying colors.

To describe a picture such as a photograph in a digital form, it is easiest to use the same

conventions that will be used to display images in monitors, using the additive color model. Each

pixel of a digital image will be represented by three bytes. This means that there is a single byte for

each of the red, green and blue components of a pixel. This byte, with high values will indicate a high

intensity and with low values will indicate a lower intensity. It is actually possible for equipment and

digital image formats to represent pixels of the image with more than a three bytes, which means a

larger range of intensity values [Pit00], but most digital images, including the ones examined in this

thesis, will be using pixels that are defined by three bytes. If a given sub-pixel is set to 0, there is

no energy going to the sub-pixel, and the sub-pixel will display as black. If the sub-pixel is 255 then

the sub-pixel is at its maximum intensity and will display whatever color it is with full intensity.

An individual pixel is therefore represented by three bytes in an ordered tuple (R,G,B) or RGB for

short. The values for R, G and B will indicate the intensity for the red, green and blue, respectively.

Often it is also useful to think of an image as a spacial two-dimensional function and the amplitude

of that function is the intensity of the image at specific pixels [GW08]. Therefore images are discrete

approximations of that function. There are many ways to store a digital image but for this paper we

will assume images are stored in a format similar to the bitmap, where each pixel is stored directly

as three bytes indicating the intensity for each of the three additive color channels. They, of course,

may or may not actually be stored exactly in order of RGB but it is simple to represent the data in

this format if provided in a di↵erent ordering. All that is important is that each pixel is represented

in an RGB encoding. Generally, an image that is NxM in size can be represented as a matrix

as shown in Figure 2.1 [Pit00]. Notice that the coordinate system used in the representation of an

image is slightly di↵erent from the traditional Cartesian coordinate system in that (0, 0) is located at

the top left of an image, not the center, and values along the y axis increase positively for an image

as you move down the image, rather than progress through negative numbers. For most algorithms,

this won’t change anything much, but it is important when discussing images, since (0, 0) is not the

center of the image.

4
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2.2 Grayscale Image Conversion, Luma

Using the RGB encoding and additive coloring scheme, we can represent 2563 = 16, 777, 216 di↵erent

colors. Of these colors there are exactly 256 grayscale colors. Grayscale colors are created when

the red, green and blue components of the pixel are exactly the same value. For example, the color

black is indicated by (0, 0, 0) in the RGB color model and white is (255, 255, 255). For computer

image processing, we often want to run algorithms against a single channel of the image. Using the

grayscale saves on computation time and simplifies the code of the algorithm, and can even ensure

bad side-e↵ects are avoided for some algorithms. The issue comes to conversion of a color image to

a grayscale image. Transitioning from 16,777,216 colors to only 256 will cause a large amount of

information loss, yet there are many techniques that allow one to convert an image to grayscale and

experience minimal loss for many common tasks that image processing programs must accomplish,

specifically edge detectors.

Figure 2.2: The fruits image and the color channels of the image. (Top: Color image and red
channel. Bottom: Green and blue channel.)

There are many ways to create a grayscale image from a color image. One technique would be

to simply use a single color channel, such as red, as the intensity value of the monochromatic image.

Since, as was already discussed, the red is one of the primary colors in the RGB encoding scheme,

the red values of a pixel are represented by a single 0 through 255 value. If we created an image

using only the red components of the RGB encoding, the resulting image would be a grayscale image

5



www.manaraa.com

where each pixel uses the magnitude of the red channel of the original as the RGB values in the

resulting image. Objects that have more red in them will have higher intensity, in general, and

objects that lack red will have lower intensities. The same technique can be applied to the other

color channels as well.

Figure 2.2 shows a color image and grayscale image representations of each of the color channels

of the image. The first image of the figure shows the original color image, and the three grayscale

images are the red, green and blue channels. The tomatoes at the bottom of the figure, which appear

red in the color image contain large magnitudes of red. When we look at the red channel, those

tomatoes are generally a bright color, indicating that the values of the red channel are high at those

points. In contrast, the tomatoes appear very dark in the green and blue channels, suggesting that

there is very little blue or green used to create the color of the tomatoes. The grapes, while are

slightly brighter in the green channel, actually have a lot of red in them as well. This shows that

just because an object is green doesn’t necessarily mean it will be fully green in an RGB encoded

image. In practice, objects of almost any color can have large amounts of the other colors in them

as well.

While the technique of using a single channel does create a grayscale image, it doesn’t accurately

represent the source image. The best way to do this accurately is to use the luma because the luma

will generally represent the intensity or lightness of objects of the image better. The luma can be

derived from the RGB encoded image and is a measure of the energy an observer perceives [GW08].

The luma, often indicated by the letter ”Y”, combined with two chroma channels, I and Q create the

YIQ color space. The YIQ color space was created by the National Television Systems Committee

(NTSC) for transmission of video that could be used for both color and black and white televisions

[BB82]. For the purposes of edge detection, the luma is a very reliable grayscale channel that gives

an accurate representation of the intensity of the image. The luma is denoted as Y and be calculated

as shown below:

Y = 0.299 ⇤R+ 0.587 ⇤G+ 0.114 ⇤B (2.1)

When equation 2.1 is applied to all of the pixels of an image, the result is a grayscale image

similar to the one shown in figure 2.3.

2.3 Image Histograms

The histogram is a useful statistics and graphical tool that allow us to see how all possible discrete

data values in a dataset are distributed. In the context of image processing, an image’s histogram

6
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Figure 2.3: The color fruits image and its luma grayscale representation. (Left: Color image. Right:
Luma grayscale image.)

is a graphical representation of the distribution of all the pixel intensities of a given channel of the

image. This means that the histogram is a function of the intensity and can be defined as:

h(I) =
X

nI (2.2)

I is an intensity value in the range [0, 255] and nI is the number of occurrences of the specific

intensity I in that channel[GW08]. The histogram is usually graphically displayed as a simple two

dimensional graph with the number of occurrences of the data on the y axis of the graph, and the

range of possible data values on the x axis, in increasing order. The height of the curve in the graph

over an intensity gives how many times that specific intensity appears in the image.

Since we have defined a pixel in an RGB encoded image to be a three dimensional tuple, in a

color image, we actually can generate three di↵erent histograms. One histogram is the histogram of

the red channel of the image. The second histogram is for the green channel. The final histogram

is the blue channel. Additionally, other histograms can be constructed for other grayscale images,

such as the luma, since these are derived from the RGB image. Figure 2.3 shows the histogram of

the fruits image as well as the histogram of the grayscale version. Note that for the luma grayscale

histogram, the red, green and blue histograms are equal. We could represent the data as a single

histogram if we chose to.

Simply viewing the histogram of an image can often reveal a lot of information about the contents

of the image. Using color histograms, a vision program can identify objects and be used as a way

to identify one object as being separate from another object that has a di↵erent color histogram.

[SB91] Similarly, even in a grayscale image, a histogram with two ”hills” at di↵erent intensities can

often suggest two objects [Ots79]. Using the histogram, we can also find the status of an image,

7
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Figure 2.4: Histogram of the fruits image. (Left: Color image. Right: Luma grayscale image.)

such as identifying poor contrast, noise or poor lighting. Images with poor contrast generally tend

to clump all of the values together. Images with good contrast will general span the entire [0, 255]

possible values for intensity [GW08]. Images with a lot of noise will generally have a jagged or

disconnected histogram with gaps and spikes. If we examine the red, green and blue histograms

of the dark image, all three histograms will generally be the same and tend towards lower values.

Bright images will exhibit the opposite behavior, and the histogram will tend towards the higher

end of the histogram. Figure 2.5 shows the histogram of a dark image. The histogram of a very

bright image is similar, except the intensities will tend towards the larger values, rather than the

smaller values. Images with histograms that are smooth and cover the entire range of values with a

good even distribution are generally high contrast and low noise and ideal for using more complex

algorithms such as edge detectors.

2.3.1 Histogram Equalization

In a dark image or a light image, the histogram will not generally use the entire range of [0, 255]

possible intensity values. Because all of the information of the image is compressed to a small range

of intensity values, histograms like the ones in Figure 2.5 show one of the problems with images that

are either too dark or too light. Instead of using the entire range of 256 values, these dark images

often only use around 30 or 40 of the values [GW08]. Unfortunately, because this is the nature in

which the images were taken, there isn’t much that can be done to improve the actual entropy of

the intensity values. We can, however infer a lot of information even from histograms that are of
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Figure 2.5: A dark image and its histogram.

this form. For example, if we notice that the red and green histograms of a color image are similar

and are in the medium to high value range, but the blue histogram is very low in value range, we

can conclude that the image is probably of some kind of yellow object.

Additionally, even though we cannot add information to the image that is not there, we are able

to more strongly emphasize the information that is in the image already. If we stretch the histogram

to cover the entire range of 0 through 255 values, and then map the old values to the, more well

spread out new values, we are able to better see the changes in intensity that were otherwise very

small and di�cult to see. This process is known as histogram equalization. The image’s intensity

values are reassigned to new values that will better distribute the the data over the full range of

values [Rus10]. The algorithm will greatly improve the contrast of images and make an image that

otherwise appears to have no detail show the information in a much more clear way as figure 2.6

shows.

From the histogram, we can see that the image must be very noisy, which is indicated by the

jaggy behavior of the histogram, but also has good contrast, since it expands the full length of

intensity values. To equalize the histogram so we can get an image like the one in figure 2.6, we need

to use the cumulative probability density function. The image is created as a mapping of the pixel

intensity of the old image to a new intensity value determined by the equalization procedure N(I).

If I is the intensity of the pixel Px,y of the original NxM image and we can create the histogram

h(I) as defined in equation 2.3, the intensity of a new pixel in the resulting image Px,y is defined

recursively as:
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Figure 2.6: The dark image after histogram equalization, and its histogram.

Px,y = N(I) =

8
><

>:

(h(I)/(N ⇤M)) ⇤ 255 if I = 0

(h(I)/(N ⇤M)) ⇤ 255 +N(I � 1) otherwise.

(2.3)

The results must be converted back to an integer and clipped based on the RGB encoding

constraints afterwards if they exceed the valid values. The results of this operation are shown in

figure 2.6. When compared to the darker image in figure 2.5, the new image much easier to see

and read, but the cost is that there is a lot of noise introduced. This is because atmospheric noise

that would have once blended in has now also been stretched across the entire frequency domain.

In order to help control these issues, we can make some modifications. For example, rather than

using the entire set of 255 values, it may be better to stretch the histogram only over half of the

possible values. Likewise, there are other filters we can use, such as blurring techniques, that will

help control some of the problems related to this technique. To use these techniques though, we will

have to explore more complicated image processing algorithms.

2.4 Digital Image Processing Techniques

Since images can be represented as a matrix of pixel values created as a function of the intensity

values at a given x and y position, we can apply two dimensional linear algebra techniques to the

intensities of images. Doing this allows us to modify an image in an easy and mathematical way. For

example, if we have two NxM matrices, we can perform operations such as addition and subtraction

between the two matrices. With images, if we have two NxM images, A and B, we can create a
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new image C that is also NxM in size and define the pixels of the new image C to be defined as

shown in equation 2.4 [Pit00].

C[x, y] = A[x, y]±B[x, y] (2.4)

If the image is in color and is represented by RGB encodings, then simply add or subtract the

matching color components between A and B. If the image is monochromatic, then you just add or

subtract the single intensity value at each pixel location. If, during the process of adding, a value

exceeds 255 or is below 0, then you should make that value 255 or 0 respectively. It is important to

do this clipping afterwards because the color components of a pixel must fit within a byte in order

to be stored and represented in an image. The clipping of these values ensures that the resulting

image of the addition operations will be a valid RGB encoded image.

The task of adding and subtracting images has some specialized uses in digital image processing.

For example, if image A is a photograph and image B is an image of the same size but contains

the tuple (255,255,255) in locations where edges of A are, and all pixels otherwise contain the tuple

(0,0,0), then adding A and B will result in an image with the edges of A lying on top of the original

source photograph.

Another application of equation 2.4 is in background subtraction. Background subtraction is

the practice of taking a photograph from a fixed vantage point and ensuring there are no objects of

interest in the photograph. This is very common in video that will have motion or video taken from

fixed vantage points [Pic04]. The camera will constantly be taking photos, including ones where the

object is not in the frame. This image acts as the background. Later after some time, an object

enters the scene and a second photograph is taken. Subtracting the two images, assuming there is

no or minimal noise in the image, will result in only the pixels that have the object having non-zero

intensity values, while the rest of the values will be subtracted out [BB82].

This algorithm can be useful for automatically supplying the pixels that belong to the object

of interest. There are problems, such as shadows that can create edges where they do not exist.

Likewise there are many algorithms that can be deployed to counteract against shadows. In gen-

eral, this thesis will assume that a single photograph is being provided for analysis. We do use

background subtraction as a convenience for selecting object histograms later though. Otherwise,

manual operation needs to provide input to that step.

2.4.1 Convolution

Convolution is a linear system operation that takes the characteristics of both functions and combines

them [BB82]. This is important in image processing because we can can describe an image as a two-
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dimension function where the intensity of each pixel is the amplitude of that function. Likewise,

we can create another function with aptitudes that carry characteristics we want to ”apply” to the

image. Convolution will displace the values of the image based on the values of the other function.

The convolution of an image f and a convolution mask g is defined by equation 2.5 [BB82].

c(y) = f ⇤ g =

Z 1

�1
f(x)g(y � x)dx (2.5)

Convolution is usually implemented as a four step process. First a convolution mask, sometimes

called a convolution matrix or the kernel, is created. Convolution masks are typically small 3x3 or

5x5 matrices, that is applied to each pixel of the image. This often depends on the type of mask

being created. The convolution mask is then centered on the first pixel of the image and then slid

over the image, pixel by pixel. All values a↵ected by the convolution matrix will be multiplied

by the corresponding value in the matrix and their results summed together. This running sum is

eventually assigned to the center pixel of the mask. Since the sliding of the mask starts at the top

left most pixel, normally, it is necessary to consider what happens at the edges. For example, if a

3x3 convolution matrix is applied to the very first pixel of the image, then the first element of the

convolution matrix will be multiplied to a pixel that doesn’t exist. There are many techniques for

handing these edge cases such as extending the image’s edge pixels, or simply wrapping. Lastly each

sum must be normalized, since the operations performed may result in values that are above 255 or

below 0.

We can use convolution to achieve many e↵ects. We can create masks that will detect edges or

perform other pattern matching techniques [BB82]. The convolution algorithm can also be used to

perform operations that a↵ect a small neighborhood of pixels. For example, we can e↵ectively use

convolution to blur an image. Edge detectors that are created by convolution are limited to only

looking in their local neighborhood though, so there are limitations to the algorithm.

Guassian Blur

As an example of convolution, one technique that will be important in this thesis is using the

Gaussian blur to reduce the noise in the image. We are able to fill a convolution mask with the

kernel’s values with the height from the 2 dimensional Gaussian probability density function as

defined in equation 2.6. Of course, doing this will result in a mask that consists entirely of fractional

values. Normally, due to the e�ciency of integer operations compared to floating point operations

on the computer, we will want to normalize the matrix to be integer. A simple way to do this is

to multiply the values in the matrix until they are whole numbers, round them, and then ensure
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that the sum of all the values is equal to one by dividing the entire sum from the convolution by a

constant. The Gaussian blur is a low pass filter based on the Gaussian distribution function [Bas02]:

G(x, y) =
1

2⇡�2
e

�(x2+y

2)

2�2 (2.6)

Using the density function, we can define a convolution matrix for a given sigma value. The

convolution matrix for the gaussian when � = 1.0 is shown in 2.7. When the mask is created,

the values will be the height of the 2-dimensional Gaussian distribution. We use it to perform the

convolution by multiplying the mask values with the intensity values of the image, summing all the

products for that pixel together and dividing by the constant. The output pixel will be an average

of the neighboring pixels, weighted by the Gaussian distribution.

1

273

2

6666666664

1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

3

7777777775

(2.7)

The Gaussian blur, while a very simple algorithm, is also a very powerful and useful algorithm,

specifically among image analysts that perform edge detection [Bas02]. Blurring the image before

executing an edge detector can help the edge detector focus on more important edges and reduce

the noise of the image. As a low pass filter, the algorithm is convenient since it can just be applied

to every single pixel in the image, regardless of the current state that the image is in.

Edge Operators

Another application for convolution is in edge detection. There are many edge detectors that can

be created by using convolution to set pixels that satisfy edge conditions equal to higher intensity

values than the pixels that do not. These detectors work by sliding a mask over a given pixel’s

neighborhood and checking if the surrounding pixels define a particular pattern that would suggest

that the intensity of the surrounding pixels has changed drastically. These drastic changes suggest

that one pixel belongs to one object, while the other pixel belongs to a di↵erent object, or the

background, so the current pixel is the edge between those two di↵erent objects. Creating the

separation of object and background is one of the most important obstacles for image processing

applications [Bas02] and edge detectors provide one way to accomplish that task.
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The Sobel edge detector is a convolution operator, created by Irvin Sobel in 1978, that will es-

timate the first derivative of the pixel intensity values centered at a given pixel [Sob78]. By finding

the rate of change in the intensity of pixel values, we can believe that areas of the image that have a

large rate of change in pixel intensity are areas that signify edges of the image. Sobel’s convolution

mask to detect horizontal edges:

2

6664

�1 �2 �1

0 0 0

1 2 1

3

7775
(2.8)

and vertical edges:

2

6664

�1 �2 �1

0 0 0

1 2 1

3

7775
(2.9)

must be run separately, and then the results combined. To perform the full algorithm, we generally

first convert the image to a grayscale, so we do not operate on all of the channels of the image at once.

Afterwards the operator is applied. Sometimes it is desirable to run the entire algorithm against

multiple channels [XJL06]. The advantages are that edges that would not have been detected in the

luma are sometimes more readily accessible in other color channels. Additionally, other modifications

to Sobel’s detector can include blurring the image prior to execution. Using the Gaussian blur will

reduce the noise that could be detected and mistook as an edge [Bas02]. Edges are defined to occur

at the points where there is a large amount of change in the magnitude of the pixel intensities of

the gray-scale image. The technique for identifying how large of a change will cause a specific pixel

to be an edge is a simple thresholding algorithm that dictates values above the threshold are edges,

and the ones below or equal to the threshold are not [SSAaS10].

There are many convolution mask edge detectors, with slight but noticeable di↵erences in their

results and reliability. Prewitt’s detector, for example, is almost the same as the Sobel algorithm

except Prewitt’s algorithm doesn’t give extra weight to the center of the mask [SSAaS10]. Prewitt’s

algorithm, like Sobel’s detector, also requires detection on both the horizontal and vertical edges

separately. The masks detect horizontal edges:

2

6664

�1 0 1

�1 0 1

�1 0 1

3

7775
(2.10)
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and vertical edges:

2

6664

�1 �1 �1

0 0 0

1 1 1

3

7775
(2.11)

Although both Sobel and Prewitt have separate masks to detect horizontal edges vs vertical edges,

that is not always the case for convolution mask edge detectors. The Laplacian operator, for exam-

ple, uses a single mask that attempts to identify if the current pixel is next to a dark or light edge

[SSAaS10]. The Laplacian mask is defined in equation 2.12.

2

6664

1 1 1

1 �8 1

1 1 1

3

7775
(2.12)

There are limitations to all of these convolution-based techniques. All of the above algorithms are

all restricted to looking at their immediate neighborhood for calculating edges. This means that it

is common for algorithms that rely exclusively on convolution to have connectivity issues after the

algorithm has been completed when presented with images that may have edges that are implied

through a more gradual change. These convolution edge detectors could have their masks extended

to beyond 3x3 neighborhoods, which would help solve these problems, but introduces other problems

with thicker edges on images that should have thin edges [BB82]. Additionally, because edges are

determined by the local neighborhood rather than the entire image, the results from these algorithms

will generally give more edges, including ones that are not as important when looking at the entire

image. In order to improve accuracy of edge detection, a more robust edge detection operator that

ensures connectivity and accuracy is required.

2.5 Edge Detection Using Canny Edge Detector

One of the most widely used edge detection operators was created by John Canny in his 1986 paper

”A Computational Approach to Edge Detection.” [Can86] Canny’s edge detection algorithm operates

in 5 phases:

1. Noise Reduction

2. Gradient Calculation
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3. Non-Maximal Suppression

4. Thresholding

5. Hysteresis

Unlike the other edge detection algorithms discussed so far, Canny’s edge detector is not a

convolution mask detector, though it does use a convolution mask during the gradient calculations

like the other convolution mask algorithms do. This means that the algorithm is not as easily harmed

by the downsides of the previous edge detection algorithms. The algorithm usually begins with a

grayscale version of a color image. Noise reduction is typically accomplished by a low pass filter such

as a Gaussian blur on a specific color channel of the image, typically the grayscale. Once the noise

has been reduced, the gradient is calculated from that channel. The gradient is determined by the

di↵erence in intensity compared to nearby pixel values, similar to or even just using the Sobel and

other edge detection algorithms [Can86]. The larger that di↵erence in intensity is, the larger the

gradient at that point will be. During non-maximal suppression, we find the local maxima of the

gradients and remove, or suppress, other values. Thresholding will take the results of the suppression

and mark pixels into one of 3 categories: definite edges, non-edges, and ”maybes” that may be an

edge or may not be an edge and the results of the final step will make that distinction. Hysteresis

will perform a recursive edge trace routine, starting from definite edges and flipping the ”maybe”

edges to edges if they are adjacent to an edge. At the end, all unreachable maybe edges are removed

and all that remains are the edges of the image. This final step helps ensure connectivity that may

have been lost during non-maximal suppression [Can86]. The final two steps make the algorithm

very di↵erent from the convolution mask algorithms and improve the accuracy of the algorithm at

the cost of time to resolve the ”maybe” pixels and perform the recursive edge trace algorithm during

hysteresis.

Canny’s edge detector is a very powerful edge detector and will work in a large number of situ-

ations. Despite the advantages the detector gives, there still can be situations where the algorithm

cannot perform up to task. As a result, there have been many adaptations of this algorithm that can

change the quality of the detection or specialize it for a specific need. Other techniques in the field of

computer vision can also be applied to Canny’s edge detector to improve or interpret the results from

the detector. For example, using multiple color channels, rather than just the traditional grayscale

channel in a single lighting condition can give more reliable results [XJL06]. Using multiple color

channels for the entire execution of the algorithm allows for the algorithm to adapt better to various

lighting conditions and the edges introduced by shadows can be identified and removed and give a

more reliable result than the single-channel Canny edge detector [XJL06]. Other techniques include
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doing color correction to correct for camera and the exposure, rather than the lighting, of the image.

By first doing color correction for the camera’s exposure and finding the best contrast for the image,

the Canny’s edge detector can better adapt to poor cameras and can get better results [NPKJ08].

In this thesis we will be looking at using smarter color channels selection to improve the contrast

of the image. By using the histogram of the object and the histogram of the background where the

object rests, we can customize the color channel selection to best suit the situation automatically

and improve the detection of edges for the object. There are many techniques for improving that

we will deploy that will improve the contrast of an image. The second major modification we will

be performing is using the histogram equalization algorithm after a color channel has been selected.

We will then modify the algorithm to be progressive and gradually modify the threshold rather than

do all of the changes at a single point. This will reduce the noise enough to get better detection

on objects that would otherwise require manipulating the Canny thresholds or executing additional

low pass filters like the Gaussian blur. We hope that these choices not only improve the general

results of the image selection when confronted with images that may lose information from the

grayscale conversion, but we will be looking at the problem from a security perspective. Objects

that were once dark can now be illuminated, and while sometimes these dark images can’t easily

have edge detectors run against them due to the noise, we want to ensure that all objects, including

ones masked in darkness or light can be seen. Likewise, our algorithms will help solve problems

pertaining to objects that blend into the background when a grayscale conversion is performed.
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Chapter 3

Implementation

3.1 Overview

This implementation of Canny’s edge detector assumes there is a human operator that can help guide

the algorithm, but the implementation also allows for automated processing. The implementation

works as a pipeline, starting with a loaded image and presents several options which can mostly

be run in any order the human operator chooses. For example, the color channel selection screen

shown in Figure 3.1 lets the operator choose between the luma grayscale, as well as the red, green or

blue channels. There is also an automatic selection, which will be discussed shortly. Each time an

algorithm is executed, a new tab with the intermediate resulting image is shown. Figure 3.2 shows

the program after the program has executed a channel selection and a Gaussian blur. The top of the

screen has multiple tabs that when clicked show the intermediate results of each step of the algorithm

taking place. This allows for the operator to see all of the intermediate calculations to try to figure

out what the best choices are for The bottom tabs are for manual selection or customization of

various options that the algorithm can perform. This also allows the user to execute filters multiple

times. This is mostly relevant to the Gaussian blur filter.

The automatic feature will run the traditional Canny edge detector steps as discussed in Chap-

ter 2. The algorithm will go through channel selection with the luma, Gaussian blur, gradient

calculations, non-maximal suppression, and finally the hysteresis. Some of the specific sub-features,

specifically the color channel selection can be done automatically. When this is done, the grayscale

isn’t necessarily the chosen color channel. Instead, we use our own algorithm for deciding on an

optimal color channel for the specific image that tries to maximize the chance that the object will

contrast against its background.

This implementation of Canny’s edge detector also provides some other minor convenience oper-
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Figure 3.1: Screenshot of the program selecting color channel.

Figure 3.2: Screenshot of the program after executing a channel extraction, Guassian blur and
gradient calcuations.
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Figure 3.3: Screenshot of selecting a portion of the image to view that part of the image’s histogram.

ations such as saving the current image to disk and viewing the histogram of the image or a selection

of the image. The selection of a specific area and viewing its histogram, as shown in Figure 3.3, is

used by the automatic color channel selector later in the algorithm. The application was written in

Microsoft Visual Studio 2010 Professional in the programming language C#. Because the applica-

tion is quite large, only some of the more important code is provided in the appendix at the end of

this thesis. All of the major algorithms will be discussed in this chapter and the specifics behind

our implementation of them.

3.2 Color Channel Selection

Normally, when using Canny’s edge detector, the image would first be converted into a grayscale

image and the algorithm would run against the luma as described in Chapter 2. This works for a

large majority of situations and is generally the safest approach to edge detection. But also, as was

discussed, as a result of the conversion to grayscale, we have lost a large amount of information. As

a result of color information being converted into a set of values in the range of [0, 255] from a much

larger range, it is obvious that there are several instances where di↵erent RGB encoded pixels will

equate to the same grayscale shade. A good way to ensure the loss of information doesn’t harm

detection, or can even be turned around to aid the detection, is to use a multi-channel edge detector
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Figure 3.4: Example of an object disappearing when viewed with the luma.

[XJL06] and run the entire algorithm against the color image itself, and it turns out that many of this

implementation’s algorithms such as blurring were designed to do that in our implementation. We,

however opt not to do so, in favor of just using the traditional single-channel approach to gradient

calculations, and using extra context to suggest extra information that may be useful for color

segmentation. This decision is due to the main algorithm that improves our results, the contrast

improvements created by our dynamic histogram equalization algorithm, cannot be implemented in

3 channels without experiencing color distortion issues.

In order to maximize the potential of our detector, we will want to create as much contrast from

the object we are interested in detecting from its background or other objects of the scene. If we

knew what the object was and what the background was, we wouldn’t need to run an edge detector,

so the most reliable method has been to use the luma. However, if we can get some additional

information about the object, we may be able to use that information to do as good as or better

than using the luma. As figure 3.4 shows, the red box in the image is clearly visible, and even simple

edge detectors such as Sobel’s or Robert’s edge detectors should be capable of detecting the edges.

The problem is that when the image is converted initially to the luma grayscale, the intensity of the

blue color and the intensity of the red box happen to match and therefore, in the grayscale, there are

absolutely no objects to detect. If however, we look at the other channels individually as in Figure

3.5, specifically either the red or the blue channels, we will find that the box is still clearly visible

and if we had used one of those two channels we would have been able to find the edges correctly.

In general, when performing edge detection, matching the most accurate representation of the

light and how humans view objects isn’t necessarily the best option. Instead, in the context of the

problem of edge detection, we simply want maximal contrast between our object of interest and the

background. Using the histograms and general statistics like the mean intensity of each channel of

the color image, we can get an idea of what the general color of the object is and the general color

of the background.
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Figure 3.5: The red box when viewed with the red and blue channels. (Left: Red channel. Right:
Blue channel.)

Our implementation of Canny’s edge detector allows for the human operator to select any color

channel that they believe will be optimal. The easiest solution is to use the luma and rely on other

aspects of Canny edge detector to do their work and handle bad properties the image may have.

Canny’s edge detector with the hysteresis algorithm can be very powerful, and resolve connectivity

issues at the end of execution [Can86]. Generally, the good way to choose a channel to operate

against is to look at the histogram of the object and the histogram of the background and maximize

the di↵erence in average values of the histograms. This is the approach our automatic selection will

take. The algorithm for this is outlined in algorithm 1.

First we will need to define a set of pixels as the object pixels and a set of pixels as the background

pixels. Our program lets you drag and drop a box to select a rough area of the image as input for

this task. From this, we create a histogram of each selection. One of the selections should be over

the object you are interested in detecting, while the other is of the background that is close to

your object. Another way to supply this input is if you have a separate background image. In

this scenario, the background image has its histogram used, and then a background subtraction is

performed and the pixels over a threshold of around 16 or so intensity values, after subtraction, is

included in the object histogram.

3.3 Histogram Equalization

After the color channel has been selected, we can still further attempt to improve the contrast of the

image for the purposes of edge detection by performing histogram equalization. As was discussed in

Chapter 2, histogram equalization will stretch the histogram of the image over the entire range of

[0, 255] values and will generally improve the contrast of the image as a result. In our implementation

of Canny edge detector, we almost always want to perform this operation on images before we do the

Gaussian blur, but after we do color channel selection. The algorithm o↵ers several advantages over
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Algorithm 1 Automatic Color Channel Selection

1: procedure SelectColorChannel(img1, img2) . Input is two sub images selected by user.
2: . Create the histograms for both provided images. The histograms actually contain an R,

G, and B component.
3: . Build the histogram for img1
4: for x 0, until x = img1.width, step x x+ 1 do

5: for y  0, until y = img1.height, step y  y + 1 do

6: for c 0, until c = 2, step c c+ 1 do . This is for each channel
7: hist1[c, img1[x, y]] hist1[c, img1[x, y]] + 1
8: end for

9: end for

10: end for

11: . Build the histogram for img2
12: for x 0, until x = img2.width, step x x+ 1 do

13: for y  0, until y = img2.height, step y  y + 1 do

14: for c 0, until c = 2, step c c+ 1 do

15: hist2[c, img2[x, y]] hist2[c, img1[x, y]] + 1
16: end for

17: end for

18: end for

19: . Find the means for each of the histograms.
20: rmean1 mean(hist1[0])
21: gmean1 mean(hist1[1])
22: bmean1 mean(hist1[2])
23: rmean2 mean(hist2[0])
24: gmean2 mean(hist2[1])
25: bmean2 mean(hist2[2])
26: . Find the absolute di↵erences between corresponding means.
27: rdiff  |rmean1� rmean2|
28: gdiff  |gmean1� gmean2|
29: bdiff  |bmean1� bmean2|
30: if rdiff > gdiff & rdiff > bdiff & rdiff > threshold then

31: return ”R” . We should use the red channel
32: else

33: if gdiff > bdiff & rdiff > threshold then

34: return ”G” . We should use the green channel
35: else

36: if bdiff > threshold then

37: return ”B” . We should use the blue channel
38: else

39: return ”L” . We should use the luma.
40: end if

41: end if

42: end if

43: end procedure
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detecting edges without contrast correction. Better contrast in the image often results in having

larger gradient values on edges. By improving the magnitude of gradients when the edge detector

is finally run, Canny’s edge detector thresholds will be more likely to emphasize important edges

because they will be closer to the high threshold, or at least be less likely to be destroyed by the

lower threshold. Algorithm 2 shows the algorithm for histogram equalization as it appears in our

implementation.

Algorithm 2 Histogram Equalization

1: procedure EqualizeHistogram(img,max intensity) . max intensity is normally 255, but
can be customized.

2: total img.width ⇤ img.height
3: hist int[255]
4: . Build the histogram
5: for x 0, until x = img.width, step x x+ 1 do

6: for y  0, until y = img.height, step y  y + 1 do

7: hist[img[x, y]] hist[img[x, y]] + 1
8: end for

9: end for

10: chist int[255]
11: . Build the cumulative probablity histogram
12: for i 0, until i = 256, step i i+ 1 do

13: if i = 0 then

14: chist[i] (hist[i]/t) ⇤max intensity
15: else

16: chist[i] (hist[i]/t) ⇤max intensity + chist[i� 1]
17: end if

18: end for

19: . Create a result image based on the old image, but using chist to map intensities
20: for x 0, until x = img.width, step x x+ 1 do

21: for y  0, until y = img.height, step y  y + 1 do

22: result[x, y] (int)chist[img[x, y]]
23: end for

24: end for

25: return result
26: end procedure

If the image has very good contrast already, there isn’t much general harm in running the

algorithm since the probability distribution function will simply select the same general intensity

values that were already in place before. If the image has poor contrast however, like dark or light

images, or even images that sit in the middle of the histogram range [BB82]. This algorithm’s main

downside, however, is a consequence of its strengths. Histogram equalization reveals objects that

are otherwise obscured by dark, light or other low contrast issues, but introduces noise created by

amplifying the intensity values of the noisy elements of the image [Sta00].
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3.3.1 Progressive Histogram Equalization

In addition to the traditional histogram equalization approach, we implemented a slight but very

useful modification to the algorithm. The histogram equalization algorithm will map the entire

image’s range of intensity values to the range of [0, 255] in a single run. This uses the probability

distribution and will move intensity values to a more evenly distributed histogram. This has the

downside of allowing for noise from the image to be enhanced along with it [Sta00]. Our solution for

this noise is to equalize the histogram of the image in steps. This will make the equalization process

more accurate and create a better and more accurate distribution of the values.

To do this, our implementation needs three pieces of information. The first is a maximum

intensity. This is the intensity that the histogram will expand to. Normally this is just 255, just like

traditional histogram equalization. However, unlike traditional histogram equalization, we will not

expand the histogram to that value at first. Instead, we will expand to a new start intensity range.

This starting range should idealistically be very close to the range that the existing image already

occupies. For example, if an image uses 40 intensity values in its current histogram and the remainder

are mostly or entirely empty, then we want our starting intensity for histogram equalization to only

go to 41 or 45 in range. Lastly, there is a step variable. The step variable is a small non-zero integer.

Typically a good number is around 5. In our implementation, we actually build the resulting image

each time so we can display the result to the user. This isn’t actually necessary, and probably isn’t

recommended in a real-time application. Instead, you can simply keep progressively applying the

histogram equalization algorithm using the results of the previous round as the input for the next

round. Not rebuilding the image would make it more e�cient. We prefer to see the algorithm and

generate the corresponding images so we can see the progression of the histogram expansion.

The algorithm we use for this modification is listed in algorithm 3. We actually just call on

our existing implementation of histogram equalization from algorithm 2 and use the max intensity

variable that already exists to our advantage.

Algorithm 3 Progressive Histogram Equalization

1: procedure ProgressiveEqualizeHistogram(max intensity, start intensity, step, img) .
start intensity should be set to roughly the range of intensity vaules in the initial image.

2: for x start intensity, until x > max intensity, step x x+ step do

3: result EqualizeHistogram(img, x)
4: end for

5: return result
6: end procedure

The results of progressive histogram equalization compared to traditional histogram equalization

are subtile, but when we use edge detectors later, very e↵ective. Figure 3.6 shows the ”Lena” picture,
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Figure 3.6: Unmodified Lena picture.

Figure 3.7: Lena after performing histogram equalization and progressive histogram equalization.
(Left: Traditional histogram equalization. Right: Progressive histogram equalization.)
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used by many in the image processing field, before the histogram equalization algorithm has been

executed while figure 3.7 shows the lena image after both histogram equalization and progressive

histogram equalization. There is a slight di↵erence in the two, specifically around the face, where

the progressive algorithm has brightened and improved the contrast further than the traditional

algorithm. We will see in the results chapter how the noise amplified by the progressive histogram

equalization algorithm is more manageable than the regular algorithm.

3.4 Noise Reduction

Now that the image is in a single channel and the contrast of the image has been increased, we have

likely introduced some degree of noise in the operations, specifically with the histogram equalization

if the image required a large amount of contrast stretching. Even the progressive variation can

introduce some noise, specifically in the case of extremely dark or very low contrast images. Normally,

even without running histogram equalization, the Canny edge detector blurs the image to reduce

noise anyhow, so it is convenient to do the equalization before properly starting Canny’s edge

detector. The first phase of Canny’s edge detector focuses on minimizing noise by creating a Gaussian

blur on the grayscale image. The Gaussian blur is a probability density function that is applied to

each pixel at a given x and y position. As discussed in chapter 2 we can use the density function

G(x, y) =
1

2⇡�2
e

�(x2+y

2)

2�2 (3.1)

to create a convolution mask that represents a discrete approximation of the Gaussian function

[GW08]. In our implementation, we decided to make the � = 1.0 static. This is mostly for simplifica-

tion of the code, since the mask itself can be provided as a constant rather than created at runtime.

If additional blur levels are required, the blur can be executed multiple times. Using � = 1.0 we can

compute the mask as follows:

1

273

2

6666666664

1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

3

7777777775

(3.2)

In order to use the mask, we have to perform the convolution algorithm. Algorithm 4 shows the

details of the blur’s implementation and the convolution algorithm that it uses. This algorithm

was actually implemented to be multiple channel, since it could happen at any point in the im-
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age processing pipeline, even though it is recommended that it be used after equalization and/or

color channel selection. If there are not other channels in the image, which is implemented as a

three dimensional integer array in the application, it will not run the blur on those channels. The

implementation of the algorithm itself is a standard convolution using the mask from equation 3.2.

Algorithm 4 Guassian Blur

1: procedure GuassianBlur(img)

2: mask  

2

66664

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

3

77775

3: const 273
4: . Build the histogram
5: for x 0, until x = img.width, step x x+ 1 do

6: for y  0, until y = img.height, step y  y + 1 do

7: for currChannel  0, until currChannel = channels, step currChannel  
currChannel + 1 do

8: sum 0
9: for i 0, until i = mask.width, step i i+ 1 do

10: for j  0, until j = mask.height, step j  j + 1 do

11: . Indexes image based on current mask index and ensures index is in the
image border.

12: indexi (x�mask.width/2 + i+ img.width)%img.width
13: indexj  (y �mask.height/2 + j + img.height)%img.height
14: sum sum+ img[indexi, indexj, currChannel] ⇤mask[i, j]
15: end for

16: end for

17: sum sum/const
18: result[x, y, currChannel] min(max(sum, 0), 255) . Ensures valid RGB

encoding
19: end for

20: end for

21: end for

22: return result
23: end procedure

3.5 Gradient Calculations

Once the image is smoothed by the Gaussian, we can begin gradient calculations. For a given pixel

at the position x and y we say that the intensity of that pixel is denoted as I(x, y). The gradient

for a specific pixel of the image has both a direction and magnitude, and can be represented as a

vector. The gradient vector’s magnitude, ||rI(x, y)||, indicates the magnitude of the rate of change

in intensity values between pixels while the direction of that vector indicates the direction towards

the di↵erence [Can86]. Therefore the magnitude ||rI(x, y)|| contains a lot of valuable information
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regarding the edges of an image, since we can eventually use thresholding to indicate that magni-

tudes above a certain value are definitely an edge and magnitudes below a certain threshold are

definitely not an edge. We calculate each gradient as follows:

dI

dx
⇡ I(x+ 1, y)� I(x� 1, y)

2
(3.3)

dI

dy
⇡ I(x, y + 1)� I(x, y � 1)

2
(3.4)

This finds the gradient for the individual x and y components of the gradient vector respectively.

To find the magnitude we simply sum the absolute value of the components [Can86].

||rI(x, y)|| =
p

I(x)2 + I(y)2 ⇡ |dI(x)|+ |dI(y)| (3.5)

That is, the magnitude of the intensity vector for a given pixel is approximately equal to the

absolute value of the individual components of the vector added together [Can86]. In our imple-

mentation, we simply store this in a three-dimensional array similar to an image, but with the X

component, the Y component and the magnitude instead of color channels.

3.5.1 Non-Maximal Suppression

In Canny’s original edge detection algorithm, one of the main innovations the algorithm introduced

was further processing on the gradient values to reduce the amount of false positives [Can86]. Canny’s

algorithm does this by going pixel by pixel and finding the direction of the gradients. Generally it

is best to create an estimation of the direction of the gradient and round them to multiples of 45

degrees.

First the sign of the gradients is considered. The signs of the gradients will determine which

of the four quadrants the gradient is pointing towards. Once the direction is known, the absolute

value of the gradients is considered [Can86]. For quadrant 1 of the circle, there are five possible

locations where the gradient could lie. It could be directly on the 0�line, which will happen if dI
dy = 0.

Similarly, if the dI
dx = 0, we know the direction of the gradient is on the 90�line. If | dIdx | = | dIdy | and

we know the direction of the gradient is in the first quadrant, we know the direction of the gradient

is on the 45�. The last two possibilities for quadrant 1 is the direction of the gradient falls between

the 0�and the 45�, or the direction falls between the 45�and the 90�.
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Once we have estimates for the directions of the gradients we now know which set of pixels to

compare the current pixel to. If the current pixel has a gradient on the 90�or 275�, for example,

we know that we should compare the current pixel to the one directly above and directly below.

Similarly, if we know the direction of the gradient is in a 45�or 225�we know that the two pixels we

should compare to will be the ones on the corresponding diagonal. As for gradients that fall between

one of the major lines, we look at the pixel it points towards. For example, if the gradient is on

the 45�line, we would look at pixels I(x+ 1, y � 1) and I(x� 1, y + 1). If, however, the gradient is

in-between the 0�and the 45�lines, we will look at pixels I(x+ 2, y� 1) and I(x� 2, y+ 1) [GW08].

Once we know the two other pixels, we compare the current pixel’s gradient magnitude ||rI(x, y)||

to the other pixel’s magnitudes. If the current pixel is not greater than both of its neighbors, then it

is suppressed and removed from consideration of being an edge. In implementation, we signify this

by setting the pixel’s gradient magnitude to 0. If the current pixel’s gradient magnitude is maximal,

then the value of the gradient is kept as is and must wait for thresholding during hysteresis.

3.5.2 Hystersis

The final step of Canny’s edge detector is to resolve discontinuities created during non-maximal

suppression and thresholding [Can86]. The results of the non-maximal suppression has resulted in

parts of the image that had the greatest potential to be an edge remaining. Not all of the results

will be edges, or at least edges we intended. Instead, some may be noise from the background or

created by inconsistencies of photographic information. The gradients will also not indicate the

edges exactly, and they will contain a large amount of area around the edges. To ”trim” o↵ the

areas around true edges we can use an image segmentation thresholding technique [Can86].

First we must select two thresholds TL and TH for the low and high thresholds, respectively.

The problem of threshold selection will be resolved later in the following improvement sections of

this chapter, but for now the threshold is selected by a human operator. Regardless, the method of

selection for threshold values, we must ensure that TL < TH .

Since the image is represented in grayscale, the pixels are represented by a single integer ranging

from 0 to 255. If ||rI(x, y)|| >= TH then I(x, y) we set I(x, y) = 255. This indicates that the

pixel will appear white in the final image and is considered to definitely be an edge based on the

thresholding selection. If ||rI(x, y)|| <= TL then I(x, y) we set I(x, y) = 0. This indicates that the

current pixel definitely is not an edge and should not be considered further.

The process has not yet considered the pixels that were neither set as edges or set as definitely not

being edges that lie in-between the thresholds. If TL < ||rI(x, y)|| < TH then we set I(x, y) = 128.

This indicates that the pixel is a ”maybe” that should be resolved through the recursive edge tracing
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step of hysteresis.

The edge tracing algorithm can be implemented in various ways. One of most commonly deployed

edge tracing algorithms used with Canny’s detector is a small recursive function that scans the image

for pixels marked as edges from the hysteresis thresholds. Once a definite edge has been reached,

the function looks at all the neighbors of the edge to see if there are any ”maybes” directly adjacent

to it. If there are it will set that maybe to an edge and begin looking for maybes from that point,

recursively. Each time a pixel is visited, it is added to an array. This array will help ensure that the

algorithm performs quickly. The result of this execution is an image where all edges are surrounded

only by other edges or non-edges. The remaining ”maybes” are isolated from the gradients that

were selected by the thresholding step because they were not large enough to be considered an edge

and also not in the close proximity to another edge. At this point a final scan through the image is

run and all maybes are removed and set to non-edges.
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Chapter 4

Results

In order to test our algorithm, we needed to find or create suitable images. This thesis has two

primary goals. The first goal is to use user input about the object of interest, either through

manual box selection of the object, or background subtraction from a given background image, to

automatically select a color channel that gives good contrast for edge detection. There are cases

where using the luma doesn’t work as well as a di↵erent color channel, and the algorithm should

try to find those situations and create a color channel selection that will minimize those e↵ects and

hopefully maximize the contrast of the image. The second objective is to use histogram equalization

to improve contrast of images that do not use the entire domain of intensity values. This depends

heavily on the Gaussian blur being able to help clean the image from noise that may be introduced in

the process. Finally we look at progressive histogram equalization and show that the noise amplified

by the progressive algorithm is more manageable without the need for additional blurring.

In order to evaluate each of the techniques, I did them separately. That way, if one of the

techniques is not working very well, it will not hinder the performance of the other. I compared the

results to running the images through the standard Canny edge detector stack. Typically Canny

edge detector first uses the luma grayscale, blurs the image using the Gaussian blur, calculates the

gradients of the image, performs non-maximal suppression and finally uses hysteresis to connect

the edges and finalize the image. To make the tests easier, when doing a test, we used the same

hysteresis thresholds among all the tests to ensure that better thresholding didn’t cause the result

improvement. The results improvement can only be because of the element we are testing.
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Figure 4.1: The base cylinder image.

4.1 Evaluating the Color Channel Selector

The first algorithm we tested was the automatic function of the color channel selector. The theory is

that by choosing the channel that maximizes the di↵erence between the background and the object,

we get better contrast from the background and foreground objects.

The first set of tests were on images of a small metal cylinder. The source image shown in Figure

4.1 is a mostly grayscale image. Looking at the photograph, we can notice that the cylinder itself

tends to have a reddish-hue and the top of the image actually has some of the reddish hue as well.

This is likely due to poor lighting conditions, the lens of the camera, or perhaps both. While we

could use color correction techniques [NPKJ08] to correct for some of these issues we are going to

simply attempt to use a color channel that maximizes the contrast rather than modify the image

further for the first test of our edge detector. If we study the histograms of the cylinder and the

background as shown in figure 4.2, we can see that indeed the cylinder does have a slight reddish

hue to it, but the background’s red values are also somewhat high.

The fact that both the background and the object have red hues to them means that the di↵erence

between the two isn’t as great as it could have been. This property of their histograms means that

the di↵erences of the means for that channel are somewhat small, and despite being the most highly

represented color is not selected. This is actually a good thing, since it is important to remember

that the goal of the color channel selection is to pick a color channel that maximizes contrast, not

necessarily be the most heavily represented color channel in the image. Since the background has a

lot of red and the object has a lot of red, when the red channel is extracted, details are harder to
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Figure 4.2: Histograms of the background and the cylinder from user selection. (Left: Background.
Right: Object.)

Channels Background Mean Object Mean Di↵erence Selection
Red Channel 148 122 26 Not Selected
Green Channel 145 107 38 Selected
Blue Channel 144 111 33 Not Selected

Table 4.1: Color Channel Selector’s logic.

identify. The cylinder’s color channels are shown in Figure 4.3.

The color selection algorithm automatically selects the channel that it believes will have the

most contrast by looking at the di↵erences between the background’s histogram and the object’s

histogram. The means of the histograms for both the object and the background, as well as the

di↵erences considered are shown in the table 4.1. As we stated, despite the red channel having larger

values, both the background and the object had large red values, so ultimately the red channel wasn’t

selected. Because the di↵erence in background and the object was greatest in the green channel,

and by a somewhat large number, 38, the green channel was selected as the color channel to execute

the algorithm against.

The results of running the remainder of Canny’s edge detector on the cylinder image with the

hysteresis thresholds TL and TH set to 40.0 for the lower threshold and 90.0 for the upper threshold

is shown in Figure 4.4. There are better choices for hysteresis thresholds than this selection and

we would likely be able to detect the cylinder sides a bit better, but the purpose of this test isn’t

necessarily to detect the edges of the cylinder, rather, compare the results of choosing the green

color channel compared to the traditional selection of the luma channel. If the thresholding isn’t

perfect, then there is room for a decline or increase in quality of the detection. In the green and the
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Figure 4.3: Color channels of the cylinder image. (Top: Luma and red channel. Bottom: Green and
blue channel.)
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Figure 4.4: Detection results for Thresholds: TL = 40 and TH = 90. (Top: Luma and red channel.
Bottom: Green and blue channel.)
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blue channels, we can see the left side of the cylinder starting to be outlined by the edge detector

while the luma and the red channels do the worst, not indicating any real edge in the locations that

the green and blue do. While the di↵erence is subtile, there is a noticeable di↵erence in the output

edges of the two algorithms.

4.2 Evaluating Histogram Equalization and Progressive Histogram Equal-

ization

The second major part of this thesis is the histogram equalization algorithm and the progressive

histogram equalization algorithm. By applying histogram equalization, we can greatly improve the

contrast of the image by allowing the image to use more intensity values. For testing the histogram

equalization, I decided to run it against the same cylinder image as we ran the color channel selector

against. The main reason the sides do not appear in the other algorithm is that there is very little

contrast between the edges of the cylinder and the table it is sitting on. After the Gaussian blur is

applied, the little amounts of contrast gained by the color channel selection simply isn’t enough to

make the edges survive. When non-maximal suppression happens right before hysteresis, some of

the gradient values that are needed to ensure hysteresis can make the connections it needs to make

fail. If we can create more contrast in the image, we can probably detect the sides of the cylinder

without changing the thresholds much or at all.

We decided to run the test with histogram equalization on the luma as well as the green channel.

As we saw from the previous section, the green channel gave very good results for this particular

image, even better than that of the luma. Because histogram equalization is such a comprehensive

algorithm, it is unlikely that the color channel selection will have a substantial role, at least in the

case of the cylinder image, on the detection of edges.

The first step will be to extract the color channels for the image. These are shown in Figure 4.3.

Using the histogram equalization algorithm, we are able to create images that use the entire range of

intensity values. The images in figure 4.5 show what the cylinder looks like after the algorithm has

been executed. We run the algorithm on the luma and the green channel. The luma is used because

it is the traditional approach. We include the green channel because, as we have seen, we get results

that are a little better from the green channel for this image. Doing the green channel as well allows

us to see if we can see if this result continues to be true even after applying new procedures such as

histogram equalization. Running the rest of Canny’s edge detector on the image, using hysteresis

thresholds fTL = 40 and TH = 90, we are able to create the edge maps shown in Figure 4.6.
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Figure 4.5: The cylinder after histogram equalization. (Left: Luma. Right: Green channel.)

Figure 4.6: Detection results histogram equalization and for thresholds: TL = 40 and TH = 90.
(Left: Luma. Right: Green.)

The edges of the object are much more defined when compared to any of the results in figure 4.4,

but it should also be obvious that a lot of noise was introduced when the algorithm was executed

as well. The area surrounding the cylinder is no longer smooth. These false edges are often created

when the gradients created by noise do not fall under the TL but one of the gradients are high enough

to be included by TH . Some false edges are to be expected and can be dealt with. For example,

if there are only a small handful of pixels in a completely disconnected area of the image that are

considered edges, there’s a good chance they aren’t actually edges. Likewise, longer edge lines that

don’t follow specific geometry we may be expecting are likely not edges for the object either.

When we look at these fake edges though, some of these do not fit the description of acceptable

fake edges. Specifically the ones to the left of the cylinder in the luma edge maps. The two

horizontal edge lines that appear to be coming from the cylinder could very easily be mistaken for

real geometry. The green channel’s edge maps also have fake edges that are bad and it would be

hard for the program receiving the edges to further do operations on the image as they are currently.
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Figure 4.7: Detection results histogram equalization and for thresholds: TL = 40 and TH = 95.
(Left: Luma. Right: Green channel)

Clearly, the histogram equalization has defined the edges better by increasing the values of the

gradients, but at the cost of adding a lot of noise to the image. There are two tools that Canny’s

edge detector has to combat the noise introduced by the histogram equalization. The first is to just

alter the thresholds during the final step of Canny’s edge detector. The low threshold, as explained,

is responsible for eliminating weak gradients while the high threshold is responsible for empowering

stronger gradients. Gradients equal to or above the high threshold are considered edges while

the gradients equal to or below the lower threshold are considered non-edges with the remainder

considered ”maybes” until the recursive edge trace occurs. By simply increasing the criteria of what

it takes to be considered an edge, we can actually eliminate a lot of the false edges. Figure 4.7 shows

the result of simply changing the TH from 90.0 to 95.0.

The other way of eliminating noise is to use the Gaussian blur. While currently the Gaussian is

being executed against the image, we are currently only using a single pass of the algorithm with

� = 1.0. If we run multiple passes of the algorithm, or increase the sigma, we can increase the

blurring e↵ect. Of course, this runs the risk of damaging the contrast that was just gained by the

equalization, at the same time, it is also a very e↵ective noise handler. We can get an idea of how

many times we need to run the Gaussian blur algorithm by looking at the histograms. Figure 4.8

shows the progression of blurring and the e↵ects the blurring process has on the histogram. The

first histogram comes directly after the histogram equalization process was executed. Each of the

following histograms show one blur level, up to the third level, at the furthest right position of the

figure. Each time the blur is performed, the noise of the image and the grainy behavior starts to

disappear. This serves as a good visual indicator of how many times the Gaussian needs to be

executed to reduce the noise of the image. The result is a smooth histogram that covers the entire

[0, 255] range of intensity values.
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Figure 4.8: Results of the Guassian on an equalized histogram.

We can now execute the Canny edge detector without adjusting the hysteresis thresholding and

we can see that the noise introduced by the histogram equalization is gone. The false edges have

been mostly removed, as Figure 4.9 shows, and the overall detection of the cylinder is better than

without the histogram equalization for the same threshold values. While this method of using

multiple Gaussian blurs after histogram equalization does improve over simply not using histogram

equalization at all, for a given threshold, it is likely in general a better solution to adjust the

TH instead, making it unlikely the fake edges out in the background of the image Some of the

edges in this result break more than the ones that simply change the thresholding. Changing the

thresholding is also more computationally e�cient. On the other hand, this solution is much easier

for implementation. Choosing good Canny thresholds is a much more di�cult task, since it requires

modifying two thresholds. You may tweak the high threshold several times but not get better results

because the low threshold is too high and removes too many ”maybe” edges. Blur levels are an easier

thing to quantify because if you still have noise, increase the blur levels until you start harming the

detection of the object.

Figure 4.9: Detection results of the equalized image at two di↵erent blur levels. (Left: Two blur
levels. Right: Three blur levels.)
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Finally, another technique we could use is our progressive histogram equalization algorithm.

This algorithm will start at an intensity of 40 for the cylinder image and progressively modify the

histogram until the histogram covers the maximum 255 range of possible values. The step size is

set to 5. The results of using the progressive algorithm is shown in 4.10 for both the luma and the

green channels.

Figure 4.10: Detection results of the progressively equalized image for thresholds: TL = 40 and TH

= 90 (Left: Luma. Right: Green channel.)

The progressive histogram equalization algorithm gives much better results than the histogram

equalization results from figure 4.6 and the other results from figure 4.4. Even without changing

the Canny thresholds or using additional levels of blurring, we can identify the edges of the cylinder

clearly. While there are fake edges introduced by the progressive histogram equalization algorithm

as well, they are generally smaller and more manageable than the ones introduced by traditional

histogram equalization. The long streaks that could have confused a program that used the edge

maps as input are generally gone, and most of the fake edges from the noise are small and easy to

identify. While doing additional blur levels does give better results, and we could do additional blur

levels after progressive histogram equalization as well, we don’t really have to in order to identify

the object. We also don’t really need to modify the Canny thresholds to detect the object better

either.
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Chapter 5

Conclusion

In this thesis we have demonstrated an edge detector implementation that will automatically select a

color channel and perform histogram equalization with the intent to maximize contrast of the object

trying to be detected. Using minimal input from the human operator, the program can compare

the histograms of what the user has defined as being the general area of pixels for the object, and

the general area for pixels for the background. By finding the color channel that has a maximal

di↵erence, we are often able to create a stronger contrast which will better represent the edges of the

object when the actual detection occurs. Likewise, by using the entire domain of intensities available

to the image, histogram equalization greatly improves the overall contrast of the image [GW08]. We

can use multiple levels of Gaussian filtering, or modifications of the thresholds to help reduce the

noise of the equalization algorithm. Finally, we introduced the progressive histogram equalization

algorithm which is able to get good results by better distributing the values of the histogram to

begin with, resulting in less and more manageable noise.

Some of these techniques do come at a cost, however. Objects that are primarily one color, but

have a small part that is a di↵erent color can sometimes be mis-represented in one color channel but

would behave normally under the luma grayscale. Likewise, histogram equalization, while it does

generally improve the output of the detector by improving the contrast, can also cause harm by

introducing noise, and unless su�cient blurring or histogram equalization intensity limit selection

is performed, the noise can interfere with the detection of edges. While we are able to resolve the

issues in the cylinder examples from our results chapter, this may not be true for other images where

increasing the blur levels may cause objects to become harder to detect. The progressive histogram

equalization algorithm is generally robust, but there is no guarantee that noise will be reduced by

better histogram distribution.

There are many techniques that can further be applied to this implementation of Canny’s edge
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detector to further improve upon the results. Currently, only the additive color model is being

considered in the color channel selection. There are situations where the maximal color channel is

very close in values to a second color channel, for example red and blue, and rather than picking red

or blue, a better choice may have been magenta. Adding CYMK channels to the selection algorithm

could probably help reduce the number of cases where the fallback to the luma is considered the

best possible option for the image. Likewise, the algorithm could probably be implemented entirely

in color and create a multi-channel Canny edge detector solution. The problem with a multi-channel

Canny edge detector is that the progressive and traditional histogram equalization cannot be used

against color images in the current implementation. The color channels could experience experience

color shift if implemented in full color rather than a single channel. This could be resolved if the image

is modeled by a di↵erent color space than RGB, specifically one like the hue/saturation/intensity

(HSI) model [BK07]. In this scenario, the histogram equalization could be applied to the intensity

or the saturation of the image, but the hue can be preserved. The resulting image would then be a

full color image with the contrast enhancement benefits of histogram equalization techniques. This

would give us the ability to use a full color Canny edge detector implementation and possibly get

better results.
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Appendix A

Code Listing

public void histogramEqualization(int intensity)

{

int width = currentImage.GetLength (0);

int height = currentImage.GetLength (1);

int channels = currentImage.GetLength (2);

int[, ,] result = new int[width , height , channels ];

Histogram h = new Histogram(currentImage , intensity);

// The histogram created a cumulative probability function of the with the current

image ’s histogram. We just use it here

for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)

{

for (int currChannel = 0; currChannel < channels; currChannel ++)

{

if (currChannel == RED) {

result[x,y, currChannel] = (int)h.rCumulativeProbability[currentImage

[x,y,currChannel ]];

} else if (currChannel == GREEN) {

result[x,y, currChannel] = (int)h.gCumulativeProbability[currentImage

[x,y,currChannel ]];

} else if (currChannel == BLUE) {

result[x,y, currChannel] = (int)h.bCumulativeProbability[currentImage

[x,y,currChannel ]];

}

}

}

}

this.currentImage = result;

}
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public void calculateCumulativeProbabilityHistograms(int total)

{

double t = total;

for (int i = 0; i < 256; i++)

{

if (i == 0)

{

rCumulativeProbability[i] = (rHistogram[i] / t) * max_intensity;

gCumulativeProbability[i] = (gHistogram[i] / t) * max_intensity;

bCumulativeProbability[i] = (bHistogram[i] / t) * max_intensity;

}

else

{

rCumulativeProbability[i] = (rHistogram[i] / t) * max_intensity +

rCumulativeProbability[i - 1];

gCumulativeProbability[i] = (gHistogram[i] / t) * max_intensity +

gCumulativeProbability[i - 1];

bCumulativeProbability[i] = (bHistogram[i] / t) * max_intensity +

bCumulativeProbability[i - 1];

}

}

}

public void gaussianBlur ()

{

int width = currentImage.GetLength (0);

int height = currentImage.GetLength (1);

int channels = currentImage.GetLength (2);

int[,,] result = new int[width , height , channels ];

int[,] mask = new int[,] { // mask for gradient

{ 1, 4, 7, 4, 1},

{ 4, 16, 26, 16, 4},

{ 7, 26, 41, 26, 7},

{ 4, 16, 26, 16, 4},

{ 1, 4, 7, 4, 1}

};

int sum = 0;

for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)

{

for (int currChannel = 0; currChannel < channels; currChannel ++)

{

sum = 0;

// Apply the mask and get the sum

for (int i = 0; i < 5; i++)

{
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for (int j = 0; j < 5; j++)

{

int temp_x = (x - 2 + i + width) % width;

int temp_y = (y - 2 + j + height) % height;

sum = sum + (currentImage[temp_x , temp_y , currChannel] * mask[i,

j]);

}

}

sum = sum / 273; // divide the sum to get the average

result[x, y, currChannel] = Math.Min(Math.Max(sum , 0), 255); // apply the

average to the result

}

}

}

this.currentImage = result;

}

public void calculateGradients ()

{

int width = currentImage.GetLength (0);

int height = currentImage.GetLength (1);

int[,,] result = new int[width , height , 3];

for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)

{

result[x, y, XCOMPONENT] = (currentImage[getIndex(x, -1, width - 1), y,GRAY]

- currentImage[getIndex(x, 1, width - 1), y, GRAY]) / 2;

result[x, y, YCOMPONENT] = (currentImage[x, getIndex(y, 1, height - 1), GRAY]

- currentImage[x, getIndex(y, -1, height - 1), GRAY]) / 2;

result[x, y, MAGNITUDE] = Math.Abs(result[x, y, XCOMPONENT ]) + Math.Abs(

result[x, y, YCOMPONENT ]);

}

}

this.gradientImage = true;

this.currentImage = result;

}

public void nonMaximalSuppression ()

{

int width = currentImage.GetLength (0);

int height = currentImage.GetLength (1);

int[,,] result = new int[width , height , 3]; // These aren ’t color channels. They are

x comp , y comp and magnitude at this point (requires calc gradients)

for (int x = 0; x < width; x++)

{
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for (int y = 0; y < height; y++)

{

/* we need to determine the x and y values for the pixel we are going to

compare the pixel against.

* we do this by looking at the angle of the gradient. Once the angle is

known , we get 2 sets of xy

* values. If this pixel is the local maxima for the 3 pixels , then it is an

edge.

*/

int x1 = 0, y1 = 0, x2 = 0, y2 = 0; // we use these as indexes into the

channel values for the comparison

// if the signs of both are positive , then it is in quadrant 1

if (currentImage[x, y, 0] >= 0 && currentImage[x, y, 1] >= 0)

{

// we look at absolute values now...

// in quad 1, if y is 0, then the angle is 0 degrees

if (currentImage[x, y, 1] == 0)

{

x1 = getIndex(x, 1, width - 1);

y1 = getIndex(y, 0, height - 1);

x2 = getIndex(x, -1, width - 1);

y2 = getIndex(y, 0, height - 1);

}

// if the x is greater than the y (but y != 0), then the angle is between

0 and 45 degrees

else if (Math.Abs(currentImage[x, y, 0]) > Math.Abs(currentImage[x, y,

1]))

{

x1 = getIndex(x, 2, width - 1);

y1 = getIndex(y, -1, height - 1);

x2 = getIndex(x, -2, width - 1);

y2 = getIndex(y, 1, height - 1);

}

// if they are equal , then the angle is exactly 45 degrees

else if (Math.Abs(currentImage[x, y, 0]) == Math.Abs(currentImage[x, y,

1]))

{

x1 = getIndex(x, 1, width - 1);

y1 = getIndex(y, -1, height - 1);

x2 = getIndex(x, -1, width - 1);

y2 = getIndex(y, 1, height - 1);

}

// if the y is greater than the x (but x != 0), then the angle is between

45 and 90 degrees

else if (Math.Abs(currentImage[x, y, 1]) > Math.Abs(currentImage[x, y,

0]))

{

x1 = getIndex(x, 1, width - 1);
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y1 = getIndex(y, -2, height - 1);

x2 = getIndex(x, -1, width - 1);

y2 = getIndex(y, 2, height - 1);

}

// else the x was equal to 0, so the angle is 90 degrees

else

{

x1 = getIndex(x, 0, width - 1);

y1 = getIndex(y, -1, height - 1);

x2 = getIndex(x, 0, width - 1);

y2 = getIndex(y, 1, height - 1);

}

}

// if the x is negative , but the y is positive , then it is in quadrant 2

else if (currentImage[x, y, 0] < 0 && currentImage[x, y, 1] >= 0)

{

// we look at absolute values now...

// in quad 2, if the y is greater than the x, then the angle is between

90 and 135 degrees

if (Math.Abs(currentImage[x, y, 1]) > Math.Abs(currentImage[x, y, 0]))

{

x1 = getIndex(x, -1, width - 1);

y1 = getIndex(y, -2, height - 1);

x2 = getIndex(x, 1, width - 1);

y2 = getIndex(y, 2, height - 1);

}

// if they are equal , then the angle is exactly 135 degrees

else if (Math.Abs(currentImage[x, y, 0]) == Math.Abs(currentImage[x, y,

1]))

{

x1 = getIndex(x, -1, width - 1);

y1 = getIndex(y, -1, height - 1);

x2 = getIndex(x, 1, width - 1);

y2 = getIndex(y, 1, height - 1);

}

// if the x is greater than the y (but y != 0) then the angle is between

135 and 180 degrees

else if ((Math.Abs(currentImage[x, y, 0]) > Math.Abs(currentImage[x, y,

1])) && currentImage[x, y, 1] != 0)

{

x1 = getIndex(x, -2, width - 1);

y1 = getIndex(y, -1, height - 1);

x2 = getIndex(x, 2, width - 1);

y2 = getIndex(y, 1, height - 1);

}

// else , the y was equal to zero , so the angle is 180 degrees

else

{

x1 = getIndex(x, -1, width - 1);

y1 = getIndex(y, 0, height - 1);
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x2 = getIndex(x, 1, width - 1);

y2 = getIndex(y, 0, height - 1);

}

}

// if the signs of both are negative , then it is in quadrant 3

else if (currentImage[x, y, 0] < 0 && currentImage[x, y, 1] < 0)

{

// we look at absolute values now...

// in quad 3, if the x is greater than the y, then the angle is between

180 and 225 degrees

if (Math.Abs(currentImage[x, y, 0]) > Math.Abs(currentImage[x, y, 1]))

{

x1 = getIndex(x, -2, width - 1);

y1 = getIndex(y, 1, height - 1);

x2 = getIndex(x, 2, width - 1);

y2 = getIndex(y, -1, height - 1);

}

// if they are equal , then the angle is exactly 225 degrees

else if (Math.Abs(currentImage[x, y, 0]) == Math.Abs(currentImage[x, y,

1]))

{

x1 = getIndex(x, -1, width - 1);

y1 = getIndex(y, 1, height - 1);

x2 = getIndex(x, 1, width - 1);

y2 = getIndex(y, -1, height - 1);

}

// else , the y was greater than the x, so the angle is between 225 and

275 degrees

else

{

x1 = getIndex(x, -1, width - 1);

y1 = getIndex(y, 2, height - 1);

x2 = getIndex(x, 1, width - 1);

y2 = getIndex(y, -2, height - 1);

}

}

// otherwise , it is in quadrant 4.

else

{

// we look at absolute values now...

// in quad 4, if the x is equal to 0, then the angle is exactly 275

degrees

if (currentImage[x, y, 0] == 0)

{

x1 = getIndex(x, 0, width - 1);

y1 = getIndex(y, -1, height - 1);

x2 = getIndex(x, 0, width - 1);
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y2 = getIndex(y, 1, height - 1);

}

// if the y is greater than the x (but x != 0) then the angle is between

275 and 315 degrees

else if (Math.Abs(currentImage[x, y, 1]) > Math.Abs(currentImage[x, y,

0]))

{

x1 = getIndex(x, -1, width - 1);

y1 = getIndex(y, 0, height - 1);

x2 = getIndex(x, 1, width - 1);

y2 = getIndex(y, 0, height - 1);

}

// if they are equal , then the angle is exactly 315 degrees

else if (Math.Abs(currentImage[x, y, 0]) == Math.Abs(currentImage[x, y,

1]))

{

x1 = getIndex(x, 1, width - 1);

y1 = getIndex(y, 1, height - 1);

x2 = getIndex(x, -1, width - 1);

y2 = getIndex(y, -1, height - 1);

}

// else , the x was greater than the y, so the angle is between 315 and 0

else

{

x1 = getIndex(x, 2, width - 1);

y1 = getIndex(y, 1, height - 1);

x2 = getIndex(x, -2, width - 1);

y2 = getIndex(y, -1, height - 1);

}

}

// The indexes for the pixel we are comparing to have been set. If either of

the two pixels are bigger than the current pixel (x,y), then this is not

an edge.

//if (channelValues[x, y] > channelValues[x1, y1] && channelValues[x, y] >

channelValues[x2, y2] && x1+x2+y1+y2 > 0)

if ((Math.Abs(currentImage[x, y, 0]) + Math.Abs(currentImage[x, y, 1])) > (

Math.Abs(currentImage[x1, y1 , 0]) + Math.Abs(currentImage[x1 , y1 , 1]))

&&

(Math.Abs(currentImage[x, y, 0]) + Math.Abs(currentImage[x, y, 1])) > (

Math.Abs(currentImage[x2, y2 , 0]) + Math.Abs(currentImage[x2, y2 ,

1])) && x1 + x2 + y1 + y2 > 0)

{

result[x, y, MAGNITUDE] = Math.Abs(currentImage[x, y, 0]) + Math.Abs(

currentImage[x, y, 1]);

}

else

{

result[x, y, MAGNITUDE] = NOTEDGE; // this means that the pixel was less

than or equal to the neighbor. Suppress it as not being an edge.
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}

} // Ends inner for loop

} // Ends outer for loop

this.currentImage = result;

}

public void hysteresis(double lowThreshold , double highThreshold)

{

int width = currentImage.GetLength (0);

int height = currentImage.GetLength (1);

int[,,] result = new int[width , height , 1];

// First we create a histogram of the non -zero pixels

int[] svHistogram = new int [256];

// initialize array to zero

Array.Clear(svHistogram , 0, 256);

// All non -suppressed pixels will , by default , be ’maybes ’

for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)

{

if (currentImage[x, y, MAGNITUDE] != NOTEDGE)

{

result[x, y, GRAY] = MAYBE;

}

}

}

int sum = 0; // sum of total values

for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)

{

// We want to exclude the suppressed values from this calculation

if (currentImage[x, y, MAGNITUDE] != NOTEDGE)

{

svHistogram[currentImage[x, y, MAGNITUDE ]]++;

sum ++;

}

}

}

// of the values that survived suppression , the bottom lowThreshold% of values

certainly are not edges. We can eliminate them now.

int highcutoff = (int)(sum * (highThreshold / 100)); // Actual number of high values

within highThreshold%

int lowcutoff = (int)(sum * (lowThreshold / 100)); // Actual number of low values
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within lowThreshold%

Console.WriteLine("Low Cutoff: " + lowcutoff);

Console.WriteLine("Hig Cutoff: " + highcutoff);

int bottomValues = 0;

int i = 1;

do

{

bottomValues += svHistogram[i];

// if the number of values has not reached cutoff , then these are non -edges

if (bottomValues < lowcutoff)

{

for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)

{

if (currentImage[x, y, MAGNITUDE] == i)

{

result[x, y, GRAY] = NOTEDGE;

}

}

}

}

i++;

} while (bottomValues < lowcutoff);

int upperValues = 0;

i = 255; // we are going from top to bottom now

do

{

upperValues += svHistogram[i];

// if the number of values has not reached cutoff , then these are edges. Mark

them with 255

if (upperValues < highcutoff)

{

for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)

{

if (currentImage[x, y, MAGNITUDE] == i)

{

result[x, y, GRAY] = EDGE;

}

}

}

}

i--;

} while (upperValues < highcutoff);
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// Everything that isn ’t either 0 or 255 at this point should be a ’maybe ’ (set to

128).

for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)

{

recursiveEdgeTrace(result , x, y);

}

}

// After recursive edge trace , if we did it, we can eliminate remaining maybes

for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)

{

if (result[x, y, GRAY] == MAYBE)

{

result[x, y, GRAY] = NOTEDGE;

}

}

}

this.gradientImage = false;

this.currentImage = result;

}

/*

* Recursively trace edges. If the point passed in is an edge (255) then check all the

neighbors for ’maybes ’ (128). If a

* ’maybe ’ is found switch it to an edge , and recursively trace its edges. Do nothing if

the neighbors are edges (255)

* or not edges (0)

*/

private void recursiveEdgeTrace(int[,,] image , int x, int y)

{

int width = image.GetLength (0) - 1;

int height = image.GetLength (1) - 1;

if (image[x, y, GRAY] == EDGE)

{

// check all neighbors

for (int i = -1; i <= 1; i++)

{

for (int j = 1; j >= -1; j--)

{

if (image[getIndex(x, i, width), getIndex(y, j, height), GRAY] == MAYBE)

{ // if the neighbor of the edge is a maybe

image[getIndex(x, i, width), getIndex(y, j, height), GRAY] = EDGE; //

then that neighbor is going to be set to an edge
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recursiveEdgeTrace(image , getIndex(x, i, width), getIndex(y, j,

height)); // and we should do a recursive edge trace on it too

}

}

}

}

}
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